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Time reversal and the spatio-temporal matched filter
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Abstract

It is known that focusing of an acoustic field by a time-reversal mirror (TRM) is equivalent to

a spatio-temporal matched filter under conditions where the Green’s function of the field satisfies

reciprocity and is time invariant, i.e. the Green’s function is independent of the choice of time

origin. In this letter, it is shown that both reciprocity and time invariance can be replaced by a more

general constraint on the Green’s function that allows a TRM to implement the spatio-temporal

matched filter even when conditions are time varying.
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For over a decade, time-reversal focusing has been described as an implementation of a

spatio-temporal matched filter. This was first derived by Fink[1] who showed that the fields

produced by each element in a time-reversal array added coherently at the focus. Dorme[2]

showed how this can be realized on reception of a signal by an array. Recently, Tanter

et al.[3] proved that time-reversal produced the optimal spatial matched filter. This work

established that time invariance and reciprocity are sufficient for time reversal focusing to be

the optimal spatio-temporal matched filter. (If G(x2, t2;x1, t1) is the Green’s function for the

acoustic system, then time invariance implies G = G(x2,x1, t2 − t1), and reciprocity implies

G(x2,x1, t2− t1) = G(x1,x2, t2 − t1) [1].) A related but still unanswered question is whether

both time invariance and reciprocity are necessary for a time reversal array to produce the

optimal spatio-temporal matched filter. Though this would seem physically intuitive, we

will show mathematically that time invariance and reciprocity are not strictly necessary for

time-reversal focusing to be the spatio-temporal matched filter. We first derive the spatio-

temporal matched filter for a general (time-variant) wave system using a method similar to

that of Tanter[3] and Cox[4]. This is compared with the response of a time-reversal array

system to a point source in the medium, which leads to a necessary condition on the Green’s

function for time reversal focusing to be equivalent to the spatio-temporal matched filter.

This condition is naturally satisfied for Green’s function of time-invariant wave systems that

obey reciprocity. However, it is also possible to formulate Green’s functions that satisfy the

condition but do not satisfy reciprocity or time-invariance.

In signal processing texts, the matched filter is typically derived for single channel time

series (see [5, 6]). A signal u(t) is input into a filter with impulse response h(t), resulting

in an output y(t) = h(t) ∗ u(t) (∗ indicates convolution). The input is assumed to be a

combination of signal s(t) and additive white noise w(t) (u = s + w). The filter h(t) is

chosen to maximize the output signal-to-noise ratio at a specified time T (SNR(T )). The

SNR is given by

SNR(T ) =

∣∣∣
∫ T

0
h(t′)s(T − t′) dt′

∣∣∣
2

σ2
∫ T

0
|h(t′)|2 dt′

, (1)

where E{w(t)w∗(t + τ)} = σ2δ(τ). The filter that maximizes SNR(T ) is h(t) = s(T − t),

which is the matched filter. Since the denominator of the SNR can be interpreted as the

total energy in the filter response in the interval 0 < t < T [6], the matched filter is also the

h(t) that maximizes the numerator given the constraint of constant energy.
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For multi-channel signal processing, such as beamforming, the output y(t) is given by

y(t) =

N∑

n=1

∫ t

0

hn(t− t′)xn(t) dt′ , (2)

where {xn(t) : n = 1, 2, ..., N} is the set of input time series, and {hn(t) : n = 1, 2, ..., N} is

the set of filters. In this case the SNR at time T is

SNR(T ) =

∣∣∣
∑N

n=1

∫ T

0
hn(t′)s(T − t′) dt′

∣∣∣
2

σ2
∑N

n=1

∫ T

0
|hn(t′)|2 dt′

, (3)

where E{wm(t)w∗
n(t + τ)} = σ2δmnδ(τ). Maximizing the SNR leads to the MMSE beam-

former described in Van Trees [7]. Again, this can be interpreted as maximizing the numer-

ator given the constraint of constant total energy for the filters.

Consider now an array of N acoustic elements (point sources) at positions an (n =

1, 2, ..., N) radiating into a medium. Given the set of excitations {En(t) : n = 1, 2, ..., N},

the resulting acoustic field is

ψ(x, t) =

N∑

n=1

∫ t

0

G(x, t; an, t
′)En(t′) dt′ , (4)

where the (complex) Green’s function G(x, t;xs, ts) specifies the response at spatial location

x and time t to an impulse at xs and time ts (G = 0 for t < ts from causality). This

expression is similar to equation (2) for the beamformer if we identify the field ψ(x, t)

with the output y(t), the excitations En(t) with the filters hn(t), and the Green’s functions

G(x, t; an, t
′) with the input data xn(t). We can define an equivalent signal-to-noise ratio

SNR(x0, T ) as the ratio of |ψ|2 at a given position x0 and time T to the total energy in the

excitations in the interval 0 < t < T . (This is the square of the functional used by Tanter,

et al.[3]). The vector form of the Schwartz inequality, as found in Cox[4], is

∣∣∣∣∣
N∑

n=1

∫
f ∗

n(t)gn(t) dt

∣∣∣∣∣

2

≤

(
N∑

n=1

∫
|fn(t)|2 dt

)(
N∑

n=1

∫
|gn(t)|2 dt

)
, (5)

where the equality holds when gn(t) = kfn(t) and k is a constant independent of n. We use
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this to bound SNR(x0, T ):

SNR(x0, T ) =
|ψ(x0, T )|2

∑N
n=0

∫ T

0
|En(t)|2 dt

=

∣∣∣
∑N

n=1

∫ T

0
G(x0, T ; an, t)En(t) dt

∣∣∣
2

∑N
n=0

∫ T

0
|En(t)|2 dt

≤
N∑

n=1

∫ T

0

|G(x0, T ; an, t)|2 dt , (6)

with equality when En(t) = G∗(x0, T ; an, t). The spatio-temporal matched filter maximizes

SNR(x0, T ), which occurs when the equality condition is met. The resulting field is

ψMF (x, t) =
N∑

n=1

∫ t

0

G(x, t; an, t
′)G∗(x0, T ; an, t

′) dt′ . (7)

To implement the matched filter for a time-variant system, the Green’s function must be

known a priori. It cannot be obtained from direct experimental measurement because the

conditions for which a measured Green’s function would be valid would have changed by

the time the measurement is completed. An exception might be a time-varying system that

is periodic, i.e. G(x, t;x′, t′ + T ′) = G(x, t;x′, t′) for some T ′. If the period is known, a

measured Green’s function could be stored for use when conditions are repeated.

We compare the matched filter result to that obtained by assuming the array acts as a

time reversal mirror. Suppose a source at position x0 emits an impulse at time t = 0. The

field sampled at each array element would be ψ(an, t) = G(an, t;x0, 0). If these are recorded

over the period 0 < t < T , time reversed, and emitted by the array, the resulting field would

be

ψTR1(x, t+ T ) =

N∑

n=1

∫ t

0

G(x, t+ T ; an, t
′ + T )G(an, T − t′;x0, 0) dt′ , t > 0 . (8)

This could be realized, in principle, for a time-variant wave system because it does not require

prior knowledge of the Green’s function. However, if one has a model of the Green’s function

or the conditions are repeatable, the time-reversed field could be emitted simultaneously with

the source pulse. The resulting field would be

ψTR2(x, t) =

N∑

n=1

∫ t

0

G(x, t; an, t
′)G(an, T − t′;x0, 0) dt′ , t > 0 . (9)

This second result is equal to the field produced by the matched filter (equation (7)) if the

Green’s function satisfies the condition

G(an, T − t;x0, 0) = G∗(x0, T ; an, t) , 0 < t < T . (10)
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This states that the time-reversed response of the system at an to an impulse emitted at

position x0 and time 0 is equal to the complex conjugate of the response at x0 and time T

to an impulse emitted at position an and time t. For a time invariant system the condition

reduces to

G(an;x0; t− t′) = G∗(x0; an, t− t′), t > t′ , (11)

which is a generalization of reciprocity to a wave system with a complex Green’s function.

For a real Green’s function, the condition agrees with the statements of reciprocity used by

Fink [1] and others [2, 3].

In summary, we have derived a mathematical condition (Eqn. (10)) on the Green’s

function such that time-reversal and matched filtering are equivalent for a general time-

variant acoustic system. It is not difficult to find functions that obey this condition, e

g.

G(x1, t1;x2, t2) = f(x1)f
∗(x2)e

iω(t1+t2−T ) . (12)

This generalizes the earlier analysis by Fink and others [1–3] to systems that are not time-

invariant. Actual implementation with a time-reversal array system would be possible only

in cases where conditions repeat periodically. This could always be accomplished in a lab-

oratory environment. Examples of time-variant systems that obey Eqn. (10) will be the

subject of future study.
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